3x^2+6x=296

Simple and best practice solution for 3x^2+6x=296 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+6x=296 equation:


Simplifying
3x2 + 6x = 296

Reorder the terms:
6x + 3x2 = 296

Solving
6x + 3x2 = 296

Solving for variable 'x'.

Reorder the terms:
-296 + 6x + 3x2 = 296 + -296

Combine like terms: 296 + -296 = 0
-296 + 6x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-98.66666667 + 2x + x2 = 0

Move the constant term to the right:

Add '98.66666667' to each side of the equation.
-98.66666667 + 2x + 98.66666667 + x2 = 0 + 98.66666667

Reorder the terms:
-98.66666667 + 98.66666667 + 2x + x2 = 0 + 98.66666667

Combine like terms: -98.66666667 + 98.66666667 = 0.00000000
0.00000000 + 2x + x2 = 0 + 98.66666667
2x + x2 = 0 + 98.66666667

Combine like terms: 0 + 98.66666667 = 98.66666667
2x + x2 = 98.66666667

The x term is 2x.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2x + 1 + x2 = 98.66666667 + 1

Reorder the terms:
1 + 2x + x2 = 98.66666667 + 1

Combine like terms: 98.66666667 + 1 = 99.66666667
1 + 2x + x2 = 99.66666667

Factor a perfect square on the left side:
(x + 1)(x + 1) = 99.66666667

Calculate the square root of the right side: 9.983319421

Break this problem into two subproblems by setting 
(x + 1) equal to 9.983319421 and -9.983319421.

Subproblem 1

x + 1 = 9.983319421 Simplifying x + 1 = 9.983319421 Reorder the terms: 1 + x = 9.983319421 Solving 1 + x = 9.983319421 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 9.983319421 + -1 Combine like terms: 1 + -1 = 0 0 + x = 9.983319421 + -1 x = 9.983319421 + -1 Combine like terms: 9.983319421 + -1 = 8.983319421 x = 8.983319421 Simplifying x = 8.983319421

Subproblem 2

x + 1 = -9.983319421 Simplifying x + 1 = -9.983319421 Reorder the terms: 1 + x = -9.983319421 Solving 1 + x = -9.983319421 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -9.983319421 + -1 Combine like terms: 1 + -1 = 0 0 + x = -9.983319421 + -1 x = -9.983319421 + -1 Combine like terms: -9.983319421 + -1 = -10.983319421 x = -10.983319421 Simplifying x = -10.983319421

Solution

The solution to the problem is based on the solutions from the subproblems. x = {8.983319421, -10.983319421}

See similar equations:

| (5x+3)(7x+1)=0 | | y=6+8e^7x | | 4/3y=-28 | | t+6=0 | | 3x+7=x-17 | | -35=-7/2w | | dx(ln(sinx))= | | 4xy=2x^3-y | | 4a^3-20a^2-25a+125=0 | | star=star | | (-8)cos(8x)=0 | | 4(5x+2)+2=17x+4 | | 6/5y=42 | | =e^7x | | 12=a(a-1) | | 5-(2x-1)=12 | | 2(5a+4)=4a+8 | | x^2+0.25x-0.065=0 | | 3x(x+2)=2x(x+1)+0 | | Cos2.8=6.3/x | | 2y=-8x+13 | | 5x-1=1x+3 | | (5-z)(3z-2)=0 | | a(a-5)+10=2a | | (a-8)(a+7)=-2a | | 43-7x=19+5x | | -3x^2=x | | x^2+0.2x-0.065=0 | | 5(2x-3)=2(x+5)-9 | | 2(x+y)-z=2x+z | | 1/100=5/x | | 3x^2+13x^2+4x=0 |

Equations solver categories